Предложен альтернативный сверхпроводящий кубит, который обещает совершить прорыв в квантовых компьютерах

00:00 03.10.2023
0 222
Предложен альтернативный сверхпроводящий кубит, который обещает совершить прорыв в квантовых компьютерах

Учёные из Массачусетского технологического института представили альтернативную архитектуру сверхпроводящего кубита с более продолжительным временем работы и меньшей чувствительностью к ошибкам. Это две ключевые характеристики, которые могут привести к появлению коммерческих универсальных квантовых компьютеров. Архитектура испытана на одно- и двухкубитовых схемах, чем подтвердила свою перспективность.

Современные квантовые вычислители компаний Google и IBM на сверхпроводящих кубитах для построения логических элементов используют так называемые трансмониевые кубиты (transmon). В основе таких кубитов лежит джозефсоновский переход, работающий на одной частоте. Около десяти лет назад были предложены кубиты на двухчастотных джозефсоновских переходах. Архитектурно трансмониевые кубиты можно считать одиночками, тогда как флюксониевые кубиты задействованы группами — цепочками, в которых несколько или даже множество джозефсоновских переходов. В этих группах низкочастотные флюксониевые кубиты использовались для хранения квантовых состояний (кубитов), а высокочастотные — для логических операций (гейтов).

Со временем было показано, что флюксониевые кубиты способны примерно на порядок дольше удерживать кубиты в когерентном состоянии, что давало время на выполнение логических операций с более низкой вероятностью возникновения ошибок, чем в случае трансмониевых кубитов. Так, одна из работ лета этого года показала, что время жизни флюксониевого кубита достигло 1,43 мс. До недавнего времени специалисты мало работали с флюксонием, но такие его выдающиеся качества игнорировать нельзя — это может стать кратчайшим путём к производительным и масштабируемым универсальным квантовым компьютерам.

В новой работе исследователи из MIT показали, как можно повысить надёжность работы (помехоустойчивость) флюксониевых кубитов. Дело в том, что сильная связь, образующаяся между флюксониевыми кубитами в цепочке, кроме полезных свойств также вела к увеличению влияния ошибок. Поэтому учёные фактически разбавили флюксониевые кубиты трансмониевыми, врезав трансмониевый элемент между двумя флюксониевыми.

Проведенные для однокубитовой и двухкубитовой флюксониевой схемы исследования показали, что точность работы двухкубитовых вентилей на основе новой архитектуры достигла 99,9 %, а однокубитной — рекордного значения в 99,99 %, о чём учёные рассказали в статье в журнале в журнале Physical Review X.

Источник

Новости по теме

Подождите, идет обработка запроса